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Deltahedral views of fullerene polymorphism

By Doxarp L. D.CasPAR

Rosenstiel Basic Medical Sciences Research Center and Department of Physics,
Braideis University, Waltham, Massachusetts 02254-9110, U.S.A.

Fullerenes and icosahedral virus particles share the underlying geometry applied by
Buckminster Fuller in his geodesic dome designs. The basic plan involves the
construction of polyhedra from 12 pentagons together with some number of
hexagons, or the symmetrically equivalent construction of triangular faceted surface
lattices (deltahedra) with 12 five-fold vertices and some number of six-fold vertices.
All the possible designs for icosahedral viruses built according to this plan were
enumerated according to the triangulation number 7' = (h®+hk+ k?) of icosadelta-
hedra formed by folding equilateral triangular nets with lattice vectors of indices
h, k connecting neighbouring five-fold vertices. Lower symmetry deltahedra can be
constructed in which the vectors connecting five-fold vertices are not all identical.
Applying the pentagon isolation rule, the possible designs for fullerenes with more
than 20 hexagonal facets can be defined by the set of vectors in the surface lattice
net of the corresponding deltahedra. Surface lattice symmetry and geometrical
relations among fullerene isomers can be displayed more directly in unfolded
deltahedral nets than in projected views of the deltahedra or their hexagonally and
pentagonally facted dual polyhedra.

1. Introduction

Buckminster Fuller (1963) called his discipline ‘comprehensive anticipatory design
science’. Anticipatory science involves recognizing evident answers to questions that
have not yet been asked. Fuller’s dymaxion geometry (cf. Marks 1960) started with
his rediscovery of the cuboctahedron as the coordination polyhedron in cubic close
packing, which he renamed the ‘vector equilibrium’. Visualizing this figure not as a
solid but as a framework of edges connected at the vertices, he transformed the
square faces into pairs of triangles to form an icosahedron; and subtriangulation of
the spherical icosahedron led to his frequency modulated geodesic domes. Some of
Fuller’s icosageodesic designs have been used for centuries in the Far East for
weaving coolie hats (cf. Pawley 1962). Also anticipating geodesic dome designs, a
complete enumeration of all possible subtriangulated icosahedral surface lattices
(including chiral plans not used by Fuller) had been described by Goldberg (1937) as
a mathematical curiosity. Inspired by Fuller’s dome designs, this enumeration was
discovered again to explain why isometric virus particles have icosahedral symmetry
(Caspar & Klug 1962). Following Fuller’s packing notions, Mackay (1962) arranged
spherical particles on nested icosahedral surface lattice nets in a non-crystallographic
packing which anticipated quasi-crystals. When Kroto et al. (1985) discovered Cq,
which they modelled as the archimedean truncated icosahedron —the familiar
football shape and Fuller’s lowest frequency modulated icosageodesic sphere — they
appropriately named this anticipated structure ‘buckminsterfullerene’.
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134 D. L. D. Caspar

The essential characteristic of fullerenes is that each carbon atom is bonded to
three neighbours forming a polyhedral shell with 12 pentagonal and some number of
hexagonal facets; for Cy,, there are 20 hexagonal facets. Possible isomers for higher
fullerenes have been enumerated by Fowler, Manolopoulos and colleagues (Fowler,
this volume ; Fowler et al. 1991 ; Manolopoulos 1991 ; Manolopoulos & Fowler 1992);
and some of the higher fullerenes have been isolated and spectroscopically
characterized (Diederich et al. 1991; Ettl et al. 1991; Diederich & Whetten 1992;
Kikuchi et al. 1992; Taylor et al. 1992). The predicted and observed most stable
isomers obey the isolated pentagon rule: no pentagon shares an edge with another
pentagon.

The geometry of fullerenes has been conventionally represented by drawings or
models of polyhedra constructed from hexagons and pentagons. This geometry can
be equally represented by the dual polyhedra: each three-connected vertex
corresponds to a triangular facet, and each pentagon or hexagon to a five- or six-
connected vertex. Polyhedra constructed from equilateral triangles are called
deltahedra (Cundy & Rollet 1954). The particular class of deltahedra consisting of 12
five-vertices (V,) and some number of six-vertices (V) was analysed to account for
the symmetry of icosahedral viruses and to predict polymorphic forms of assembly
for the coat proteins of these viruses (Caspar & Klug 1962, 1963). Possible designs for
deltahedra can be systematically explored by considering the ways in which a plane
equilateral triangular net can be cut and folded to form a polyhedron. A utility of the
deltahedral representation of non-icosahedral surface lattices, such as many
interesting higher fullerenes, is that the symmetry relations of the component
trigonal units can be clearly visualized in the unfolded deltahedral lattice net.

2. Quasi-equivalence revisited

Quasi-equivalence was conceived to describe ways in which large numbers of
identical protein subunits could build closed containers of predetermined size such as
virus capsids by a ‘self-assembly’ process (Caspar & Klug 1962). Self-assembly
presumes specificity of bonding among the structural units. If the same contacts
between neighbouring units were used over and over again, in exactly the same way,
identical units would be equivalently related and the completed assembly would
have some kind of well-defined symmetry: this idea led to the prediction that rod-
shaped viruses should have helical symmetry, and ‘spherical’ viruses might have
tetrahedral, octahedral, or icosahedral symmetry (Crick & Watson 1956). Icosahedral
symmetry, which was recognized by X-ray crystallography to be the underlying plan
for some small isometric virus particles (Klug & Caspar 1960), requires 60, and only
60, equivalent chiral subdivisions. By 1962 chemical studies on two small icosahedral
viruses had indicated a count of more than 60 identical protein molecules; and
electron microscopy of some larger icosahedral viruses had revealed regular surface
arrays of morphological units which were not multiples or submultiples of 60. These
observations posed two interrelated questions. Why is icosahedral symmetry
preferred ? What are the possible designs for an icosahedral shell constructed by
regular bonding of a multiple of 60 chiral structural subunits ¢ Anticipation of the
answers to these questions was critical to their formulation. The analogy drawn
between icosahedral virus particle architecture and Buckminster Fuller’s frequency
modulated icosageodesic domes (Marks 1960) was the anticipatory key.

Fuller’s dome designs involve the subdivision of the surface of the sphere into

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

/,//’ \\
o \
( 2\

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
/%

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Deltahedral views of fullerene polymorphism 135

Figure 1. Triangulation numbers 7' = (h*+ hk + k?) represented on an equilateral triangular net. An
icosadeltahedron (see figure 2) with a five-fold vertex at the origin of this net and a neighbouring
five-fold vertex at a lattice point of index &, k will have A = 207 triangular facets, V, = 10(7—1)
six-connected vertices, and V; = 12 five-vertices.

nearly equivalent facets arranged with icosahedral symmetry. If identical protein
molecules were similarly packed in each geodesic facet, they would then be quasi-
equivalently related. Geometrically, the quasi-equivalence could be measured from
the variations in the size and shape of the nearly equal geodesic facets; at the
molecular level, the same contact points between protein subunits could be used over
and over again, but the units themselves or the bonds between them would have to
be deformed in slightly different ways in the symmetrically distinct but quasi-
equivalent positions. Arrangements that minimize the variation in subunit
conformation and bonding should represent minimum energy designs for proteins
selected to self-assemble in closed shells containing many molecules.

Possible designs for closed containers built of units that maintain the same pattern
of nearest neighbour contacts can be represented by folding plane lattices into
polyhedra in various ways, conserving the edge-to-edge connections of the plane
facets. Pawley (1962) had shown that only plane lattices with square or equilateral
triangular facets, having four- or six-fold rotational symmetry respectively, can be
regularly folded onto the surface of convex polyhedra. It is evident that the smallest
range of variation in dihedral angles is obtained if a six-connected vertex, V, of the
equilateral triangular net is transformed into a five-connected vertex, V. If only Vs
are allowed on folding the triangular net into a deltahedron, then by Euler’s law,
V, =12 and the number of facets A =20+2V,. The range of quasi-equivalent
variation in the dihedral angles of such a deltahedron will be a minimum if the 12 Vs
are all equivalently related, which requires icosahedral symmetry. This reasoning
appeared to account for the selective advantage of icosahedral surface lattices for the
construction of virus capsids from some large number of identical protein subunits
(Caspar & Klug 1962).

All the possible icosahedral surface lattice designs were enumerated by counting
the ways in which the equilateral triangular net could be folded into polyhedra with
icosahedral symmetry (called ‘icosadeltahedra’). The vector between a neighbouring
pair of Vs of any icosadeltahedron must be a lattice vector of the triangular net.

Phil. Trans. R. Soc. Lond. A (1993)
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Since the 12 Vs are equivalent, the indices (4, k) of the vectors between a lattice
point chosen as origin and any point of index (4, k) define all possible icosahedral
surface lattices (figure 1). This way of counting is complete and non-redundant
(Goldberg 1937; Caspar & Klug 1963). The number of triangular facets in an
icosadeltahedron is A = 207, where the triangulation number 7' = (h*+hk+k?),
and the number of Vg =10(7T—1), or V,+V, =1074+2. If A >k # 0, the icosa-
deltahedron is chiral, and the pair of vectors (4,k) and (k,k) correspond to
enantiomorphs. Figure 2 illustrates models of icosadeltahedra for the first five
possible triangulation numbers (7'=1,3,4,7,9) built in 1962 from Geodestix
components designed by Buckminster Fuller. As models for the design of virus
capsids, each deltahedral facet could correspond to a quasi-symmetric trimer of
identical, enantiomorphic protein molecules. As models for fullerenes, each delta-
hedral facet could represent a trivalent carbon atom with quasi or strict three-fold
symmetry.

Protein molecules designed to self-assemble into icosahedral capsids of pre-
determined size may assemble into polymorphic surface lattices of lower symmetry.
Some virus capsid proteins may form tubular structures which have a diameter and
surface structure similar to the icosahedral particles. Figure 3 illustrates how the
T = 4 icosadeltahedron of figure 2, with A = 80 and point group symmetry [, could
be transformed into a A80 with Dy, symmetry by dividing the structure into two
halves perpendicular to a five-fold axis and rejoining after rotating by one unit
vector. The deltahedral cap can also be extended by adding rings of V; connectors
to form a tube of any length. The tube design can be defined by the indices 4, k of the
circumferential vector; for the tube shown in figure 3, the indices %, k£ = 10, 0.

The design of the elongated heads of T-even bacteriophage is based on a chiral
deltahedral surface lattice with D, symmetry. Mutants of these bacteriophage
produce a wide variety of tubular structures built from hexamers of the major capsid
protein arranged in cylindrical surface lattices (Yanagida et al. 1970). Under some
conditions multilayered polyheads are formed, where an innermost tube of diameter
ca. 40 nm appears to nucleate an assembly of successive layers. The inner tubes
have somewhat variable diameters with circumferential vectors mostly within a
narrow range of indices 4, k = 10, 6-12, 7. Morphogenesis of the 7-even bacteriophage
head is a complex process, involving a number of structural and regulatory proteins
(Black et al. 1992), but the assembled structures have quite regular surface lattice
designs.

Considering the chemical complexity of even the simplest icosahedral viruses, it is
remarkable that the icosadeltahedral surface lattices representing quasi-equivalent
packing of identical molecules accounts so well for the morphology of such a wide
variety of structures. The prediction of the quasi-equivalence theory (Caspar & Klug
1962) that the regular icosahedral virus capsids could be built of 607 identical
protein molecules connected so as to form 12 pentamers and 10(7'— 1) hexamers in
an icosahedral surface lattice has been definitely established for the class of viruses
with triangulation number 7" = 3, some of whose atomic structures have been solved
by X-ray crystallography (Rossmann & Johnson 1989; Harrison 1991).

Larger icosahedral viruses that have been structurally well characterized do not
obey the simple quasi-equivalence rule. For example, adenovirus capsids, for which
T = 25, are built of 240 hexons (six-coordinated units) that are trimers of the major
structural protein, and the 12 pentons consist of a different protein (Burnett 1984).
Polyomavirus capsids, for which 7' = 7, are built of a single major structural protein,

Phil. Trans. R. Soc. Lond. A (1993)
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Deltahedral views of fullerene polymorphism 137

Figure 2. Models of icosadeltahedra for the first five possible triangulation numbers (built from
(Geodestix components).

e

Figure 3. Polymorphism of deltahedral surface lattices. The 7' = 4 icosadeltahedron at the left
(A80, point group I,) is transformed to a A80 with D, symmetry (middle). At the right, the half-
icosahedral cap defined by the A, k& = 10, 0 circumferential vector has been extended by adding rings
of 10 V; connectors. The bottom of this tube could be capped symmetrically (as for the A80 models)
or asymmetrically using the A,k = 10,0 cap shown in figure 4 or the two other A, k = 10,0 caps
listed in table 1.

but the 60 hexavalent units are pentamers, chemically identical to the 12 pentavalent
pentamers (Rayment et al. 1982). Packing of the pentamers in hexagonal slots has
been explained by determination of the molecular structure of the simian
polyomavirus capsid (Liddington et al. 1991), which revealed a highly adaptable
protein molecule with extended arms that can form regular contacts in symmetrically
very different environments. The adaptability of such versatile protein molecules
(Harrison 1991 ; Caspar 1992) goes beyond the rather modest degree of adjustment
postulated for quasi-equivalently connected protein subunits of simple icosahedral
virus capsids.

Carbon, although remarkable in the variety of structures that it can form, displays
modest adjustability in the configuration of its bonds. Trivalent carbon in graphite
can have D, symmetry, but in fullerene shells only C,,, C;, C,, and C, symmetry are

Phil. Trans. R. Soc. Lond. A (1993)
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possible and the range of variation in bond distances and angles are limited. Thus,
trivalent carbon atoms in fullerene shells conform to the geometrical postulates of
the quasi-equivalence theory and the arrangement of the carbon atoms can be
represented by the surface lattice of facets of a corresponding deltahedron. Any
deltahedron built with 12 Vs represents a possible fullerene shell and those with all
vectors between neighbouring V; pairs equal to or greater than A,k = 1,1 satisfy the
isolated pentagon rule. Analysis of the possible design of the higher fullerenes by
Manolopoulos & Fowler (1992) has revealed a complex polyhedral stercochemistry
which can be illustrated by deltahedral surface lattice nets.

Jonsidering the polymorphism possible for units that could form icosahedral
surface lattices, it was evident in 1962 (figure 3) that any icosadeltahedron could be
divided into two equal halves in three different ways defined by a circumferential
vector about an axis of five-, three- or two-fold symmetry, and that additional Vs
could be added to form cylindrical extensions. Furthermore, it was found that any
cylindrical lattice formed from the equilateral trlangular net (of unit edge length)
with a circumferential vector of length (A% + hk + k2)* equal or greater than that for
h,k =5,0 could be capped with six V,s. Thus, possible non-icosahedral deltahedra
could be identified by cataloging the lattiec vectors among six Vs that could cap
each circumferential vector and connecting a pair of caps to a corresponding
cylindrical section. In this way, deltahedra with no rotational symmetry were
constructed, but 30 years ago the systematic enumeration of the myriad of designs
for deltahedra with 12 Vs and large numbers of Vs appeared to be an unrewarding
exercise. Discovery of the higher fullerenes has now made this classification an
enlightening investigation.

3. Deltahedra unfolded

Just as any cylindrical surface lattice formed from the triangular net with a
circumferential vector for which (h*+hk+h%) > 25 can be capped with six Vs,
s0 too can any deltahedron with 12 Vs be unfolded along the direction of a
circumferential vector that delimits a pair of six V; caps. Figure 4 illustrates the
unfolding and refolding of the chiral A76 deltahedron in the direction of the &, k =
10, 0 circumferential vector. This A76 with D, symmetry corresponds to the chiral C
isolated and spectroscopically characterized by Ettl et al. (1991), and their notation
for identifying the 19 carbon atoms in the asymmetric unit is followed in figure 4. The
differences in the environments of the facets which distinguish the pyracylene,
corrannulene and pyrene sites can be identified more readily in the unfolded net than
in pictures of polyhedral models.

Unfolding A76 D, along the A, k = 10,0 circumferential vector is not unique. In
figure 5, the 11 symmetrically distinct ways of unfolding A76 D, are illustrated,
together with the six ways of unfolding the tetrahedrally symmetric A76 7} isomer.
In this figure, the boundaries of the surface lattice net are marked by the vectors
between nearest neighbour Vs, rather than along the edges of triangular facets, as
in figure 4.

Relations among possible fullerene surface lattices categorized by Manolopoulos &
Fowler (1992) can be illustrated by deltahedral nets. For example, any deltahedron
can be subtriangulated by applying any triangulation number (figure 1) to increase
the number of facets by the factor 7'. Triangulating by 7' = 3 corresponds to Fowler’s
leap-frog rule. Any deltahedron circumscribed by a circumferential vector 4, k can be

Phil. Trans. R. Soc. Lond. A (1993)
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Deltahedral views of fullerene polymorphism 139

Figure 4. Deltahedral surface lattice for the chiral A76 with D, symmetry, illustrated for the
h, k= 10,0 circumferential vector. An asymmetric unit of this surface lattice, consisting of the 19
facets labelled a—s, has been marked with a bold outline. The labelling of the facets follows the
notation of Ettl et al. (1991) for the carbon atoms of the chiral C,;. Facets a—¢ (white) correspond
to pyracylene sites, j—q (light grey) to corrannulene sites, and p—s (dark grey) to pyrene sites. The
three classes of two-fold axes are located between the a—a, »—, and s—s facets. The opened-out
lattice (top) is folded into A76 D, by connecting the pair of a facets related by the A,k = 10,0
circumferential vector to form a tube segment which is capped by forming the Vs marked by black
circles. Two views of the half-capped tubular segment are shown with their mirror images (bottom).
Folding the surface lattice inside-out would have produced the mirror-image structure.

elongated following the idea of Fowler’s cylinder extension rule, in steps of n added
Ves (or 2nAs) where n is the common factor of A and k. Furthermore, for
circumferential vectors with a common factor higher than the axial symmetry of the
caps, twisting the caps about the cylinder axis can generate a different deltahedron.

Some of the relations among the 11 smallest deltahedra that obey the isolated
pentagon rule (IPAs) are classified in figure 6. For A60-A76, all circumferential
vectors are listed that divide each deltahedron into two caps with six Vs each. For
the five isomers of A78, only those representations of the unfolded deltahedron nets
are listed that can be derived by cylindrical extension or alternate combination of the
caps of a smaller deltahedron. In general, a tube defined by a circumferential vector
h,k can be capped in more than one way. A more complete listing of possible cap
designs for tubes larger than those included in table 1 could be produced by
enumerating the circumferential vectors for the higher fullerenes catalogued by
Manolopoulos & Fowler (1992).

Of the deltahedra listed in figure 6, A60 I, A72 Dg,, and A78 D, can be
respectively derived by the 7'= 3 triangulation as follows: A60 from A20 the

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 5. Unfolding of the tetrahedral T, and chiral D, isomers of A76 according to the possible
circumferential vectors that divide the deltahedra into two caps. The pair of circumferential
vectors at the boundary of each tubular segment (which contains no V,s) are marked by dashed
lines. V; lattice points are indicated by black circular sectors and the vectors between nearest
neighbour Vs are marked by bold lines. The dotted lines indicate how the two ends of the
circumferential vectors are joined to form the tubular segment. Folding only along the vectors
between Vs would produce a polyhedron with the marked polygons as facets ; whereas folding only
along edges of the triangular net produces the deltahedron (cf. figure 4). The symmetrically distinct
rotational axes for the 7, and D, point groups are marked with distinguishing shapes.
Circumferential vectors have been chosen with 4 > k and are arranged in order of increasing length
(h* + hk+ k2)2, (Interchanging A and k produces the enantiomorphic net for the D, surface lattices.)
Increasing the separation of the pairs of circumferential vectors by addition of Vs leads to cylinder
extension generating higher deltahedra (cf. table 1).

icosahedron; A72 from A24, the hexagonal antiprism (which can be derived from the
icosahedron by adding two Vs in extension along a two-fold axis) ; and A78 from A26,
derived from the icosahedron by addition of three Vs extended along a three-fold
axis. In turn, by extension, A70 derives from A60; A74 from A70; A76 D, from A60
and A72 by one path or from A70 by two different paths; and A76 7} from A74.

Phil. Trans. R. Soc. Lond. A (1993)
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Deltahedral views of fullerene polymorphism 141
Point Index h,k of Circumferential Vectors
An Group|5,516,4(7,3]19,018,29,1(6,5(7,4]8,3/10,0/9,2(6,6]7,5|10,1|8,4{9,3]11,0{10,2
A60 1, oo oaloa
A70 Dy, | oo oo oB
A72 Dy, oo BB oo o-a
A74 Dg, oafoalo-y oo | BB o-a
A76 T, o-ofaa BB | 0B | By o-B
" D, oofoofoo| oo o-ofo-o 88 %:g Y-y oo
A78 Dy, oo BB oo
" G | Jee] [aB m
" C,, e o oo e
D, . - oo BB vy BB |
" D; oo

Figure 6. Circumferential vectors of deltahedra with isolated pentameric vertices (IPAs). All
circumferential vectors from , k = 5,5 to 10, 2 are listed in order of increasing length (A + hk + lcz)%.
This listing indicates possible designs for fullerene tubes that can be capped with isolated
pentamers. No such caps are possible for circumferential vectors &,k = 6,4 or 7,3; for longer
circumferential vectors, more than one arrangement of six V;s may cap a tube segment.
Symmetrically distinet caps are sequentially designated a, B, v, 8,...,as they are listed for each
h,k vector for progressively larger TPAs. Surface lattice nets for the A76 and A78 isomers are
illustrated in figures 5 and 6 respectively.

Furthermore, as is evident from figures 4 and 5,, the chiral A76 D, can be converted
into the tetrahedral A76 T}, by shifting the top cap related by the 10, 0 circumferential
vector one lattice unit to the left. Shifting two units to the left generates the D,
enantiomer. Continuing this shifting three or four steps brings a V, pair one lattice
unit apart, which violates the isolated pentagon rule, and five steps comes back by
symmetry to a starting point. Cylinder extension, by adding Vs, can also lead to
apposition of Vs that violates the isolated pentamer rule, indicated for example by
the blank entries for A72 and A74 in the column for the 9, 1 circumferential vector
in figure 6.

The interrelation of the five isomers of A78 is illustrated in figure 7. At the left,
unfolded surface lattices are drawn as in figure 5 for selected circumferential vectors
from the listing in figure 6. In the centre, projected views of the fullerene polyhedra
are compared with their deltahedra duals in the same orientation. At the right,
surface lattices for the four mirror-symmetric A78 isomers are drawn with boundaries
marked along the edges of triangular facets as in figure 4. These unfolded nets
emphasize the invariant and variable aspects of the polymorphic interchange among
the isomers of C,q Dy, =Cy, =C, =D, as described by Diederich et al. (1991).
Switching among these isomers by rotation of a C,-unit in a pyracylene
rearrangement, following the mechanism proposed by Stone & Wales (1986), is
illustrated in figure 7 by the step-wise reorientation of the three shaded pairs of
triangular facets. This local reorientation leads to the interchange of a V, and V pair
in the surface lattice. In contrast, there is no simple interchange between the chiral
D, isomer and any of the four mirror-symmetric isomers. The A78 D, can be
transformed to the D, isomer shown at the top of figure 7 by shifting the upper cap
defined by the 9,0 circumferential vector one unit to the right, or to its enantiomer
by the opposite shift. However, for C,4 this would correspond to the improbable
breaking and reforming of 18 C-C bonds.

NMR spectra of purified C,; obtained in different laboratories (Diederich et al. 1991 ;

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 7. A78 isomers. The unfolded surface lattice nets at the left are drawn with boundaries along
the vectors between nearest neighbour Vs which are marked by the black circular sectors, whereas
the boundaries for the nets at the right are along the edges of deltahedral facets. The projected
views of the fullerene polyhedra and deltahedra duals in the centre column are all oriented with a
corresponding two-fold axis horizontal. For the four mirror-symmetric isomers, there is one mirror
plane in the plane of projection and an orthogonal horizontal one. Marking the symmetry elements
for each isomer on the deltahedral surface lattice net defines the asymmetric unit.

Kikuchi et al. 1992; Taylor et al. 1992) indicate variable proportions of the isomers
D, C,, and C,,. The spectra expected for each isomer can be predicted by
enumerating the number of symmetrically distinct carbon atoms in the asymmetric
unit and noting their local environment (Fowler et al. 1991). The deltahedral facets
composing the asymmetric units of each A78 isomer in figure 7 could be labelled as
in figure 4, distinguishing the pyracylene, corrannulene and pyrene sites.

The unfolded deltahedral nets provide a convenient way to illustrate the
environments of the different carbon atoms in the asymmetric unit of higher
fullerenes, in particular those of relatively low symmetry. The interrelation among
fullerenes of different size and among various isomers can also be displayed by such
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nets. In particular, interconversion pathways that involve local reorientations at
relatively distant sites can be simply mapped. Furthermore, the classification of the
deltahedra according to their circumferential vectors provides a systematic way to
enumerate how nanotubes can be capped, and how multilayered tubes (lijma 1991)
or shells (McKay ef al. 1992) can be successively encapsulated.

I thank Eric Fontano for preparing the computer graphics diagrams and Marie Craig for
photographic assistance. This work has been supported by United States Public Health Service
Grant CA47439 from the National Cancer Institute.
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gure 2. Models of icosadeltahedra for the first five possible triangulation numbers (built from
(reodestix components).
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igure 3. Polymorphism of deltahedral surface lattices. The 7' = 4 i1cosadeltahedron at the left
\80, point group I,) is transformed to a A80 with D,, symmetry (middle). At the right, the half-
osahedral cap defined by the /&, &k = 10,0 circumferential vector has been extended by adding rings
10 V, connectors. The bottom of this tube could be capped symmetrically (as for the A80 models)
~asymmetrically using the 2,k = 10,0 cap shown in figure 4 or the two other A,k = 10,0 caps
sted in table 1.
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igure 4. Deltahedral surface lattice for the chiral A76 with D, symmetry, illustrated for the
.k = 10,0 circumferential vector. An asyvmmetric unit of this surface lattice, consisting of the 19
_acets labelled a—s. has been marked with a bold outline. The labelling of the facets follows the
‘otation of Ettl et al. (1991) for the carbon atoms of the chiral (',,. Facets a—i (white) correspond

<

) pyracylene sites, j—g (light grey) to corrannulene sites, and p-s (dark grey) to pyrene sites. The

SOCIETY

hree classes of two-fold axes are located between the a—a. r—r. and s—s facets. The opened-out
wttice (top) is folded into A76 D, by connecting the pair of a facets related by the 2,k = 10,0
ircumferential vector to form a tube segment which is capped by forming the V.s marked by black
ircles. Two views of the half-capped tubular segment are shown with their mirror images (bottom).
'olding the surface lattice inside-out would have produced the mirror-image structure.
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